The Definitive Guide to البيانات الضخمة
وهي مسؤولة عن إدارة البيانات كأصل عمل. تشمل وظائفه إستراتيجية عمليات البيانات وحوكمة البيانات.
لقد كانت بداية حقبة أنتجنا فيها أجهزة كمبيوتر لفئات متعددة من المشكلات بدلاً من البناء المخصص لكل حالة استخدام معينة.
التعلم الآلي: يُمكن استخدام تقنيات التعلم الآلي لتحليل البيانات الضخمة واستخراج النماذج والتوقعات منها.
هذا يعني أن البيانات المنظمة تتمتع بمرونة محدودة وهي مناسبة لبعض حالات الاستخدام المحددة فقط.
جمع واستخدام البيانات الضخمة تواجه تحديات قانونية مهمة، وفيما يلي بعض هذه التحديات:
تعتمد تقنيات تحليل البيانات الكبيرة على القدرة على تحليل كميات هائلة من البيانات بطرق متقدمة وذكية. يتضمن تحليل البيانات الكبيرة استخدام تقنيات الإحصاء وتعلم الآلة والذكاء الاصطناعي لتحديد الأنماط والتوجهات والعلاقات المخفية في البيانات.
فهي تمتاز بذلك بحجم يفوق قدرة أدوات قواعد البيانات التقليدية، والتدفّق الهائل لإتاحة البيانات الضخمة خصوصاً مع انتشار الذكاء الاصطناعي وإنترنت الأشياء.
من خلال تحليل كميات كبيرة من البيانات، يمكن للنظم الذكاء الاصطناعي التعلم من هذه البيانات لاتخاذ قرارات مستنيرة وتحقيق توقعات دقيقة.
الطاقة: تسهم البيانات الضخمة في تحسين كفاءة استخدام الطاقة وتوليد الكهرباء.
تطور التكنولوجيا والذكاء الاصطناعي: يعتبر الاستفادة من البيانات الضخمة أساسًا لتطور التكنولوجيا والذكاء الاصطناعي. فباستخدام البيانات الضخمة، يُمكن تدريب النماذج الذكاء الاصطناعي وتحسين أدائها في مجالات مثل التعلم الآلي وتحليل البيانات.
هناك العديد من التقنيات المستخدمة في البيانات الضخمة تحليل البيانات الضخمة، ومن أهمها:
استخدام البيانات الضخمة في التسويق يمنح الشركات القدرة على اتخاذ قرارات أفضل وتحقيق تحسينات في استراتيجيات التسويق وتجربة العملاء.
في هذا القسم، سنتحدث عن تأثير تقنية الذكاء الاصطناعي في تحسين مستوى الرعاية الصحية. سنستكشف كيف يساهم الذكاء الاصطناعي في تأمين تشخيصات دقيقة وعلاجات فعالة، ونتطرق إلى تطور التكنولوجيا والذكاء الاصطناعي في مجال الرعاية الصحية.
هذه البيانات ليست في التنسيق العلائقي وليست منظمة بدقة في صفوف وأعمدة مثل ذلك في جدول بيانات.